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A fast method for dynamic aperture (DA) optimization of storage rings has been developed
through the use of reversal integration. Even if dynamical systems have an exact reversal symme-
try, a numerical forward integration differs from its reversal. For chaotic trajectories, cumulative
round-off errors are scaled, which results in an exponential growth in the difference. The exponential
effect, intrinsically associated with the Lyapunov exponent, is a generic indicator of chaos because it
represents the sensitivity of chaotic motion to an initial condition. A chaos indicator of the charged
particle motion is then obtained by comparing the forward integrations of particle trajectories with
corresponding reversals, a.k.a. “backward integrations.” The indicator was confirmed to be ob-
servable through short-term particle tracking simulations. Therefore, adopting it as an objective
function could speed up optimization. The DA of the National Synchrotron Light Source II storage
ring, and another test diffraction-limited light source ring, were optimized using this method for the
purpose of demonstration.

I. INTRODUCTION

Accurate computation of the Lyapunov exponent (LE)
of particle motion in accelerators and comparison with
numerical dynamic aperture (DA) simulations has been
well studied. Past examples include [1–7]. A general cor-
relation between the LE and the DA has been confirmed,
but a universal or quantitative equivalence has yet to be
established. In some studies, the LE was found to under-
estimate the DA in storage rings [5]. Additionally, accu-
rate calculation of the LE [2, 8] is time-consuming due
to the long-term numerical integrations required, making
its use difficult in direct dynamic aperture optimization.

The discovery of another indicator of chaos, obtained
by comparing forward integrations and corresponding re-
versals (i.e. backward integration), can be traced back to
the 1950’s [9]. The method is also known as “the trajec-
tory reversing method”, and has been widely used to esti-
mate stable regions of dynamical systems since then [10–
15]. One of the more recent uses of this indicator have
been to understand the DA of the Integrable Optics Test
Accelerator (IOTA) in the presence of space charges [16].
The indicator is intrinsically associated with the LE, be-
cause it also represents the sensitivity of chaotic motion
to an initial condition. We found that implementing just
a few turns of forward-reversal (F-R) integrations reveal
an observable difference using high precision (e.g. 64-bit)
floats for modern storage rings. Therefore, the chaos in-
dicator can be computed at a faster rate. By combining
population-based optimization, such as multi-objective
genetic algorithm (MOGA) [17–24] with the trajectory
reversing method, a fast approach for DA optimization
has been developed and demonstrated with two exam-
ples in this paper. Tracking-based optimization has tra-
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ditionally been limited by time-consuming tracking sim-
ulations. The new approach provides a potential solution
to using short-term tracking simulations to optimize the
DA for large scale storage rings.

To further explain this approach, the remaining sec-
tions are outlined as follows: Sect. II briefly explains the
F-R integration as an indicator of chaos. A Hénon map’s
chaos is studied with this method for proof-of-principle in
Sect. III. In Sect. IV, we take the National Synchrotron
Light Source II (NSLS-II) storage ring and another test
diffraction-limited light source ring as two examples to
demonstrate the application of this approach. A brief
summary is given in Sect. V.

II. FORWARD-REVERSAL (F-R)
INTEGRATIONS

In dynamical systems, the Lyapunov exponent (LE)
is used to characterize the rate of separation of two in-
finitesimally close trajectories. In phase space, two tra-
jectories with initial separation ∆z(0) diverge at a rate
given by,

|∆z(t)| ≈ eλt|∆z(0)|, (1)

where, z(t) = (x, px; y, py; s, ps)
T is a vector composed of

canonical coordinates in phase space at time t, and λ is
the LE. The superscript (T ) represents the transpose of
a vector. Bold symbols, such as “z”, are used to denote
vectors throughout this paper. The above rate calcu-
lation assumes the divergence is treated as a linearized
approximation. The rate of separation can be different
for different orientations of the initial separation vector,
which yields multiple LEs for a given dynamical system.
The largest LE of a system is referred to as the maximal
Lyapunov exponent (MLE), which is defined as,

λ = lim
t→∞

lim
∆z(0)→0

1

t
ln
|∆z(t)|
|∆z(0)|

. (2)
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Here ∆z(0)→ 0 ensures the validity of the linear approx-
imation at any given time. The MLE provides valuable
information about the dynamical system’s predictability.

In accelerators, it is more practical to use the path
length of a reference particle s rather than time t as the
free variable. The trajectory of an arbitrary particle can
therefore be described as a deviation from a reference
particle. For example, the momentum offset is denoted
as δ = ∆p

p0
. After some canonical transformations [25],

the time t-integration can be converted to a path length
s-integration. A new MLE λs can then be re-defined as,

λs = lim
s→∞

lim
∆z(0)→0

1

s
ln
|∆z(s)|
|∆z(0)|

, (3)

where z(s) = (x, px; y, py; s − ct, δ)T are new canonical
coordinates in the phase space at position s, and s− ct is
the longitudinal coordinate offset. For convenience, the
rest of this manuscript will use path length s of particle
motion as the free variable unless stated otherwise.

Generally speaking, the calculation of MLEs as defined
above in Eqs. (2)-(3), often cannot be carried out ana-
lytically. In these cases, the calculation would therefore
require the use of numerical techniques [2, 8]. An al-
ternative, empirical method to measure the chaos of a
dynamical system is to use a reversal integration as sug-
gested in Ref. [9, 10, 16]. During proof of concept, the
properties of the system under time symmetry were cal-
culated by letting the system evolve through some num-
ber of integration steps, then switching the sign of the
time step and letting the system run backward until the
total time variable reached zero. On the return to time
zero, the changes in corresponding velocities and posi-
tions were calculated and collated, as was the value of
the time variable during the change of sign. A new set
of initial conditions could then be re-established. Due
to the unavoidable numerical round-off error [26, 27] for
a chaotic trajectory, the re-established initial conditions
deviated from the original ones as illustrated in Fig. 1.
The difference, a.k.a. the consistency error is an indica-
tor of chaos which is associated with its LE.

The principle of the F-R integration approach
can be briefly outlined as follows: A nonlinear
transfer function, denoted as f , propagates through
an N -dimensional phase space coordinate z =

(x1, x2, · · · , xN ; p1, p2, · · · , pD)
T

iteratively. In a finite-
precision computation process, the iteration from the
(n− 1)th state zn−1 to the next state zn reads as:

zn = f (zn−1) + ∆zn. (4)

where ∆zn = (∆x1, ...,∆xN ; ∆p1, . . . ,∆pN )
T

is the
round-off error vector when performing the nth iteration.
Similarly, the reversal integration can be written as,

z′n−1 = f−1 (z′n) + ∆z′n, (5)

where, f−1 is the inverse map, and primes (′) denote the
coordinates of the reversal so as to distinguish from the

Figure 1. Schematic illustration of forward and time-reversal
integrations for a dynamical system. The solid line represents
the exact trajectory from A at t = 0 to B at t = T . The
dashed line is the numerical integration, which becomes B′ at
t = T . The difference between B and B′ indicates the chaos,
but in practice, B is usually unknown. The dotted line is
the time-reversal integration starting from B′ and ending at
A′. The difference between two initial conditions A and A′

is an indicator of chaos of the system for this specific initial
condition.

forward trajectory. The errors ∆z, ∆z′ are distributed
uniformly and randomly within a range determined by
the values of z, z′, and the number of bit of the compu-
tation unit [26].

When considering a case in which only one F-R it-

eration is computed, z0
f→ z1

f−1

→ z′0. The difference
between z0 and z′0 can be estimated with local linear
derivatives,

z′0 − z0 = f−1 (f(z0) + ∆z1) + ∆z′1 − z0

≈ ∂f−1

∂z

∣∣∣∣
f(z0)

∆z1 + ∆z′1

=

[
∂f

∂z

∣∣∣∣
z0

]−1

∆z1 + ∆z′1, (6)

where the inverse Jacobian matrix of f is evaluated at
z0. For the sake of simplicity, the linearized matrix for
1-dimension x-p is shown as,[

∂f

∂z

∣∣∣∣
z0

]−1

=

[
∂x1

∂x0

∂x1

∂p0
∂p1
∂x0

∂p1
∂p0

]−1

. (7)

Equation (6) indicates that the difference |z′0−z0| origi-
nates from random round-off errors, which are scaled by
an inverse Jacobian matrix Eq. (7) on the passage of z0.

The difference, |z′0 − z0|, from one iteration can some-
times be impacted by random round-off noise, rather
than the dynamical systems themselves as desired. On
the other hand, if chaos is sufficiently weak, the differ-
ence is still invisible by just one-time scaling. Therefore,
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to overcome this difficulty, it may be necessary to im-

plement multiple iterations, z0
fN

→ zN
f−N

→ z′0, (N ≥ 2).
The difference can be estimated similarly as Eq. (6),

(z′0 − z0)N ≈ ∆z′1 +

N∑
n=2

n−2∏
j=0

[
df

dz

∣∣∣∣
z=fj(z0)

]−1
∆z′n

+

N∑
n=1

n−1∏
j=0

[
df

dz

∣∣∣∣
z=fj(z0)

]−1
∆zn. (8)

Here f j represents the value of the jth-iterations of the
map f without round-off error. Equation (8) illustrates
that round-off errors are accumulated during each iter-
ation and are then scaled by local linear matrices along
the trajectories in both directions. With sufficient iter-
ations, the cumulative difference indicates the chaos of
the trajectory.

It is worth noting that, even if a system has no chaos,
the cumulative random error between forward integration
and its corresponding reversal is directly proportional to
the number of iterations executed [27]. If chaos is present,
however, the error will grow exponentially.

In large scale modern accelerators, F-R integrations
need to be evaluated magnet-by-magnet. A full cycle
around an accelerator equates to one iteration as de-
scribed above. The round-off errors ∆z receive a contri-
bution from each integration step. A short-term tracking
simulation could generate an observable difference when
64 bit floats were used. To be specific, only one-turn F-
R integrations are sufficient to optimize the DA of the
NSLS-II storage ring. Usually these differences are ob-
servable but still at quite a small scale. Therefore, a
base-ten logarithm is used to allow a large range to bet-
ter represent them,

∆ = log10 |z0 − z′0|. (9)

III. HÉNON MAP

In this section, the F-R integration method is used to
study a 1-dimensional Hénon map,(

x
p

)
n

=

(
cosµ sinµ
− sinµ cosµ

)(
x

p− x2

)
n−1

. (10)

This discrete Hénon map represents a thin-lens sextupole
kick followed by a linear phase space rotation at a phase
advance µ. Its reversal map can be expressed as an in-
verse rotation followed by an inverse thin-lens kick,(

xt
pt

)
=

(
cosµ − sinµ
sinµ cosµ

)(
x
p

)
n

,(
x
p

)
n−1

=

(
xt

pt + x2
t

)
, (11)

where xt, pt are the intermediate variables.

The Hénon map’s linear phase advance is chosen as
µ = 0.205 × 2π in order to observe the 5th-order reso-
nance line at certain amplitudes. The difference between
initial conditions obtained from the F-R integration is
illustrated in Fig. 2. When the F-R integrations are cal-
culated with only 10-50 iterations (as shown in the top
row), the area of the stable region is overestimated and
the inside resonances are almost invisible. After 100 it-
erations, the resonance lines and stable islands become
gradually visible. More iterations can provide much more
detailed chaos information as illustrated in the two bot-
tom subplots.

Figure 2. (Colored) Contour of the F-R integrations with
different numbers of iterations for a Hénon map. The col-
ormap are the difference of initial conditions as a function
of the phase space coordinates x-p. The white area repre-
sents unbounded trajectories by manually setting a threshold
of |x| > 10. More iterations provide more detailed chaos in-
formation, but even with just a few dozen iterations, an early
indicator of chaos can be determined.

IV. APPLICATIONS

In this section we demonstrate this method by optimiz-
ing the dynamic apertures for the National Synchrotron
Light Source II (NSLS-II) [28] main storage ring and a
test diffraction-limited light source ring.

A. NSLS-II storage ring

NSLS-II is a dedicated 3rd generation medium energy
(3 GeV) light source operated by Brookhaven National
Laboratory. Its main storage ring’s lattice is a typi-
cal double-bend-achromat structure. Its linear optics
for one cell is illustrated in Fig. 3. The whole ring is
composed of 30 such cells. The natural chromaticities
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are corrected to +2/ + 2 at the transverse plane by the
chromatic sextupoles. The optimization knobs are six
families of harmonic sextupoles located at dispersion-
free sections. The goal of optimization is to obtain a
sufficient DA (|x| > 15 mm, |y| > 5 mm) for the off-
axis injection at the long straight section center where
βx = 20.5 m, βy = 3.4 m, and a |δ| > 2.5% momentum
acceptance to ensure a 3 hour lifetime at a 500 mA beam
current.

Figure 3. (Colored) The linear optics and magnet layout for
one of the 30 cells of the NSLS-II storage ring. The red blocks
represent sextupoles. The three located between two dipoles
are used to correct the natural chromaticity. The remaining
six are used here for DA optimization.

B. Optimization objectives and results

On the transverse x-y plane at the injection point, mul-
tiple initial conditions are uniformly populated within a
Region Of Interest (ROI). The ROI is chosen to cover
the needed aperture. The virtual particle trajectories
are simulated with a 4th order kick-drift symplectic in-
tegrator [29] in which negative physical length elements
are allowed. The symplectic integration is implemented
with a python code, which has been independently bench-
marked with another reliable tracking simulation code
impactz [30]. After evolving some revolutionary peri-
ods (usually an integer number of turns), their reversal
trajectories are computed by switching the sign of the co-
ordinate s and letting particles run back to s = 0. Newly
re-established initial conditions deviate from the original
ones. A forward integration and its reversal make up a
pair of trajectories for comparison. A larger difference
between a pair of initial conditions indicate a stronger
chaos. The goal of optimization then becomes minimiz-
ing the difference for all pairs of initial conditions within
the ROI. It is not practical or necessary to minimize so
many pairs of initial conditions simultaneously, therefore,

the ROI is divided into several zones as shown in Fig. 4.
For each zone, the difference of initial conditions are av-
eraged over all F-R integrations pairs. Then the averaged
values for all zones are used as the optimization objec-
tives, which need to be minimized simultaneously to sup-
press the chaos inside the whole ROI. The optimization
objective functions g reads as

∆̄i = gi(K2,j), (12)

where, i, j are the indices of the ROI zones and the
sextupoles respectively, ∆̄i is the average difference in
the ith zone, and K2,j is the jth sextupole’s normalized
gradient.

Figure 4. (Colored) Dividing the region of interest (ROI) into
n zones in the x-y plane. In each zone, multiple initial con-
ditions (represented with same-colored dots) are uniformly
populated. The optimization objectives are the difference be-
tween the initial conditions of F-R integrations averaged over
each zone.

Quantitatively, the difference in Eq. (9) and (12) for
a pair of initial conditions in the normalized phase space
can be computed as

∆ = log10

√
∆x̄2 + ∆p̄2

x + ∆ȳ2 + ∆p̄2
y, (13)

where x̄, p̄x; ȳ, p̄y are the difference of canonical coor-
dinates normalized with Courant-Snyder parameters as
follows [31], [

∆ū
∆p̄u

]
=

[
1√
βu

0
αu√
βu

√
βu

] [
∆u
∆pu

]
. (14)

where u = x, or y, The normalization of Eq. (14) ex-
presses the canonical coordinate pairs in the same units
m1/2 for arithmetic addition.

To obtain sufficient beam lifetime and DA simultane-
ously, one must optimize them simultaneously [32]. Di-
rect optimization of beam lifetime is time-consuming. An
alternative is to optimize different off-momentum DA.
This was achieved by a δ-slicing method as illustrated
in Fig. 5. First, the desired energy acceptance range is



5

determined based on the beam scattering lifetime calcu-
lation at a certain beam current. Then several sliced off-
momentum DA are included into the optimization objec-
tives. At each slice, the objective functions are evaluated
in the same way as Fig. 4.

Figure 5. (Colored) Optimizing several fixed off-momentum
DA simultaneously. By separating a 5-dimensional phase
space (x, px; y, py; δ) into several slices along the δ-axis, DA
for off-momentum particles can be optimized simultaneously.

Multiple zones within the ROI for different momentum
slices need to be minimized simultaneously. The multi-
objective genetic algorithm (MOGA) was used for this
task. More turns of particle tracking simulation can in-
dicate the chaos more accurately, but this requires more
computation time. After manually checking the depen-
dence of the chaos indicator against the number of turns,
one-turn F-R integration (crossing 30 cells) was chosen to
compute this early chaos indicator as illustrated in Fig. 6.
Although the early indicator of chaos from F-R integra-
tion provides an optimistic approximation, it does rule
out many of the less competitive candidates and narrows
down the parameter search range quickly. By allowing
a small-scale population, which includes the evolution
of only 1,000 candidates over just 50 generations, the
top candidates’ average fitness is seen to converge. It
took about 6 hours to complete the optimization with 50
Intel R© Xeon R© 2.2-2.3 GHz CPU cores. Another reliable
tracking code elegant [33] was then used to check the
DA for all the candidates only inside the last generation.
Among them, some of the elite candidates are selected
for more extensive simulation studies to check their final
performance.

The DA profiles for the top 100 candidates inside the
last generation are illustrated in Fig. 7. Although the six
sextupole families settings are very different, their DA
satisfy the minimum requirement for top-off injection.
This observation confirms that short-term F-R integra-
tion can indeed be used for DA optimization. Among
these candidates, one from the elite cluster was selected
to carry out a more detailed frequency map analysis
(FMA) to verify its nonlinear dynamics performance.

Figure 6. (Colored) The objective function evaluated in 9
zones for the δ = 0 slice. These were obtained for a spe-
cific set of sextupoles settings for the NSLS-II storage ring.
Blank points represent lost particles (|x, y| > 1 m) within 1
turn tracking. The maximum allowed number of lost parti-
cles is used as an optimization constraint. The black line is
the dynamic aperture obtained by multi-turn (1,024) track-
ing simulation with the code elegant. The one-turn F-R
integrations give a more optimistic result than the multi-turn
tracking simulation. As an early indicator of chaos, however,
it does provide a reasonable criteria for the optimizer.

The FMA results are summarized later in Sect. IV C.

Figure 7. (Colored) DA of the top 100 candidates (measured
with the area) from the 50th generation of the evolved popu-
lation obtained with the MOGA optimizer. The light yellow
box is the required aperture for the off-axis top-off injection.

In the specific example of a dedicated light source ma-
chine (the NSLS-II storage ring), the longitudinal syn-
chrotron oscillation has not been included. It is straight-
forward to include it if needed. It can be done by ex-
tending Eq. (13) to the 6-dimensional space when the
betatron-synchrotron coupling resonances become criti-
cally important, e.g. in the case of collider rings.
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C. Comparison with frequency map analysis

The frequency map analysis (FMA) is widely used to
evaluate the performance of a nonlinear lattice [34–37].
The FMA was also applied directly to optimizing the
DA of a light source ring [38]. By comparing the tune
diffusion rate determined by two pieces of turn-by-turn
simulation or measurement data, the resonances of the
lattice can be visualized. In our example, one elite solu-
tion was selected from the last generation of candidates
to carry out a detailed FMA to characterize its nonlinear
dynamics performance. In the meantime, a multi-turn
(1,024 turns) F-R analysis was conducted for a compari-
son with the FMA results. The sextupole settings for the
current NSLS-II lattice and the selected elite solution are
listed in Tab. I for comparison.

Table I. Comparison of two sextupoles settings

Sextupole unit K2 (current) K2 (F-R)

SH1 m−3 19.8329 19.8495

SH3 m−3 -5.8551 -0.4017

SH4 m−3 -15.8209 -22.0160

SL3 m−3 -29.4609 -29.0057

SL2 m−3 35.6779 27.9185

SL1 m−3 -13.2716 -2.6051

Figure 8 illustrates the comparison of the on-
momentum DA in the transverse x-y plane. Figure 9
shows the comparison of the off-momentum acceptance
in the x-δ plane. When comparing the two figures, the
FMA results yield more copious and fine patterns of the
resonance. However, the resolution of the FMA is sensi-
tive to the accuracy of measurement of the frequencies.
Some of the fine patterns in the FMA are not from real
chaotic orbits. Such phenomenon has also been observed
in studying the IOTA ring [16]. Consider an orbit whose
fundamental frequencies and their harmonics having sim-
ilar amplitudes that are mixed together. In this case, a
small fluctuation in amplitude of those frequencies over
a separate period of data acquisition could result in dif-
ferently ordered frequencies in the Numerical Analysis of
Fundamental Frequencies (NAFF) algorithm [35]. In an-
other case, when orbital frequencies are relatively close
to the data sampling rate, compared to the inverse of the
number of the sample, the measured frequency can fluc-
tuate as the time windows shift [39]. In general, these
fake fine patterns fade away as a longer sampling time is
used to improve the accuracy of the frequency measure-
ment [16]. Although the accuracy of the NAFF can be
theoretically proportional to 1/N4 (N is the total num-
ber of the sampling data) with a Hanning window [40], it
is relatively slower compared to the exponential improve-
ment of the reversal method.

A control of higher order chromaticities and amplitude-
dependent-tune-shifts to avoid destructive resonance-
crossing is critical in DA optimization. This could be

Figure 8. (Colored) Top: FMA on the x-y plane for 1,024
turns of data (512 leading and 512 trailing turns) with the
code elegant. Bottom: F-R analysis for 1,024 turns. Using
the FMA, some unusual diffusion rate (as shown in yellow
stripe near x = 0) can be observed. This is most likely due
to incorrect tune peaks picked up from the tune spectrums in
the NAFF algorithm.

Figure 9. (Colored) Top: FMA on the x-δ plane for 1,024-
turns of data (512 leading and 512 trailing turns) with the
code elegant. Bottom: F-R analysis for 1,024 turns.

achieved by minimizing some specific nonlinear driv-
ing terms [41, 42]. For example, C2200,0, C0022,0, C1111,0

are the first order amplitude-dependent-tune-shift coeffi-
cients; then C1100,n, C0011,n, n ≥ 2 are the higher order
chromaticity coefficients. These terms can be used as ei-
ther objective functions or explicit constraints. In the
F-R integration method, no explicit constraints are used
to limit them. The final tracking simulation on the se-
lected solution, however, shows that both the amplitude-
dependent-tune-shifts (Fig. 10) and the higher order
chromaticities (Fig. 11) are automatically and passively
suppressed. The on-momentum and two off-momentum
(±2.5%) DA, computed with the code elegant, are
shown in Fig. 12.

The optimization was implemented on an error-free
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Figure 10. Tune shift with initial coordinate in the hori-
zontal plane for the selected candidate. Although the ver-
tical tune rises suddenly faster at larger horizontal ampli-
tudes, the tune variations are within ±0.03 inside the range
of x ∈ [−15, 15] mm.

Figure 11. Tune variation with the momentum offset, i.e.
chromaticity for the selected candidate. The linear chromatic-
ities were tuned to +2 for both x and y planes.

model. Then the systematic and random magnetic field
errors and the misalignments have been included to con-
firm the robustness of the solution. An online beam test
on the NSLS-II storage ring was also carried out to con-
firm that the off-axis top-off injection efficiency is be-
tween 95-100%, which is comparable with our current
operation lattice. The beam lifetime at a 400 mA beam
current is longer than 5.5 hour, with a diffraction-limited
vertical beam emittance of 8 pm. While the current op-
eration lattice was observed having 4.5 hours in similar
conditions.

D. MBA lattice for diffraction-limited light source

The F-R integration method has also been used to test
on a multi-bend-achromat (MBA) structure, which could

Figure 12. (colored) On- and two off-momentum (δ = ±2.5%)
DAs for the selected candidate.

potentially be used as a diffraction-limited light source
storage ring lattice in the future. The horizontal emit-
tance of the test MBA lattice used was 78 pm at a beam
energy of 2 GeV. The linear lattice is shown in Fig. 13,
in which most sextupoles are chromatic sextupoles. The
MOGA result showing the top 100 candidates’ apertures
are illustrated in Fig. 14. The preliminary result con-
firms that the F-R integration could also be applied to
a more complicated nonlinear lattice, and the approach
itself should be general in optimizing other lattices.

Figure 13. (Colored) Linear optics and magnet layout for one
cell of a test MBA lattice.

V. SUMMARY

An indicator of chaos obtained with forward-reversal
integration has been used for optimization of dynamic
aperture of storage rings. The indicator, intrinsically
but empirically associated with the Lyapunov exponent,
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Figure 14. (Colored) On-momentum DA for the top 100 can-
didates for the test MBA lattice.

gives an early indication of the chaos of beam motion
in storage rings. Although the indicator cannot give the
exact dynamic aperture profile with a short-term track-
ing simulation, a concrete correlation and large MOGA
candidate pool yield some optimal lattice solutions. The
NSLS-II storage ring and a test MBA lattice are used as
examples to illustrate the application of this method.

Recently, the computation of the difference of F-R in-
tegrations has been implemented in the latest version
(2019.4.0) of elegant code [33] . Besides the F-R in-
tegration, elegant also provides another option for the
users to compute the change in linear actions Jx,y from
forward-only tracking, with small changes in initial con-
ditions. By properly choosing small changes based on
the machine precision, the signs and absolute values of
initial conditions, and the round-off method in computer

os, one should be able to get a similar result as the F-
R integration. However, the needed implementation in
this option is more complicated than the F-R integration.
The fundamental principle of this method is to numeri-
cally characterize the sensitivity of a chaotic motion to
its initial conditions by using round-off errors.
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